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Abstract

This work adresses the problem of functionally integrating
new instrumental techniques in musical composition.

The material consists of a data base of standardized record-
ings of multiphonics, produced within the woodwind instru-
mental family. These sound objects are first digitalized,
then subjected Lo acoustic analysis and fo a psycho-
acoustical madelling which allows them to be described as
discrete pitch sets. The objects are converted to a homo-
genous representiation, then a relationship-finding module
extracts subclasses out of them, and finds transition ele-
ments from one class to another.At that point graphs are
consiructed that express potential harmonic trajectories.
Finally, formalisms are proposed for the elaboration of
pitch scales coherent with the model.

This approach leads to a re-thinking of several important
mausical issues : discrele or non-discrete organisalion of
pitch space, temperament, micro-intervals, harmonic struc-
tures. It may also lgad instrumentalists to siluate their
playing in a mew sonic environment.

1. INTRODUCTION

Traditional compositional formalisms are generally limited
to applications simple instrurmental sounds; these sounds,
due to their ‘harmonic structure, can be reduced to the
unique and easy to manipulate concept of notes.

We shall try to define a method which will provide the possi-
bility of integrating complex acoustical objects, in musical
composition, not as decorative elements but as functional
ones which, with their inharmonicity and instability, contri-
bute to the musical structure and to its aesthetics [3].

For this purpose we chose multiphonic sounds of the wood
wind instruments (multiphonic sounds are best defined in
this family of instruments). This choice also provides the
possibility of extending our research to ensemble music,
trying to transpose results from one instrument to another.

2. MULTIPHONICS : PROBLEMATICS

Multiphonics, although consistent with the producing
instrument's timbre identity, cannot be integrated into the
traditonal harmonic fabric owing to their complex frequen-
tial structure. Moreover the fact that they form a discon-
tinuous space that is hard to manipulate a posteriori led us
to view them as the starting point for a study focussed ini-
tially - for reasons of methodological simplicity - on the
organisation of pitch space into harmonic structures.

Right from the outset, the problem arises as to the percep-
tion of these sound structures, as their identification
involves both the area of timbre and that of pitch. A previous
study [2] has already helped to highlight some points; multi-
phonic sounds are made up of components whose frequency
is clearly defined, but nevertheless difficult to identify,
because :

- they are very high or low in pitch , i.e. outside
the area of "musical fundamentals” contained in
the two staves, thus giving rise to errors of
octave and omissions. :

- there is no simple interrelation between them.

-  they form musical intervals which do not fit into
the equally tempered scale

Unstable multiphonics contain graininess due to beating
between components. The perceptual effect depends here
on the beat frequency since it can interfere with the com-

" ponents' frequencies.
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Experiences have been made consisting of musical dictation
of a multiphonic, with experienced musicians. The results
are surprisingly far from . the true pitches that are
present in the sound spectrum. A possible explanation of the
difficulties encountered in recognizing a multiphonic is that
these sounds are related both to chords, which are com-
pound ©objects whose components zre perceived separately,
and to spectral phenomena whose various components
merge to form a single timbral entity. Furthermore, when
heard as chords they are in conflict with perception habits
related to equal temperament owing to their harmonic
nature.

Traditional aural analysis fails in determinig the intervalic
structure of the multiphonic sound. The spectral analysis
(FFT) gives us better information on the frequency of the
partials in a complex sound, but involves managing huge
amounts of numerical data, few of which are of real interest
to the composer. We have to find methods to reduce the
data into a significative sub-set of values.

3. ACOUSTIC ANALYSIS OF SOUND OBJECTS

The basic tool is the fast Fourier transform algorithm (FFT).
This method provides a static photograph of the spectral
structure of a sound. It does not consider the temporal
variations of frequencies and amplitudes, but it is sufficient
for speculation on pitch space.

The first step is to calculate the FFT inside a time window in
which the sound is stable enough. We experimented with
Terhardt's virtual pitch pattern algorithm [5], in order to
find a model which takes into account the perception of the
multiphonic sounds. As the results of the full algorithm were
not sufficiently satisfactory for this family of sounds, we
finally used only the first steps that find the peaks in the
FFT, and then eliminate those frequencies that are not per-
ceived, due to the masking effect. At this point the multi-
phonic sound is described by a list of frequency-amplitude
pairs , which is both significant enough and easy to manipu-
late by a musician.
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It remains to be seen whether such a drastic data reduction
preserves a sufficiently significant core of information on
the chordal structure of the analysed sounds. Simulations
are therefore constructed by additive synthesis on the basis
of the previous results and validated by comparing them
with the real sounds, auditively and visually, using
sonagrams; thus there is throughout the process a continu-
ous interaction between the data obtained from aural per-
ception and that provided by acoustic analysis.

At this point, the multiphonics appear as an unconnected
collection of pitches. An abstract construct still needs to be
found to describe the phenomena studied and build new
structures coherent with them.
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Fig. 1 comparisons of sonographic results for real and
gsimulated sounds for bassoon, clarinet (B flat) and tenor

saxophone multiphonics.
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4. REPRESENTATION GF SOUND OBJECTS

The problem is now to find a reference system in order to
express each object in an unique and minimal way.

We shall thus consider an object as a particular pattern of
intervals, transposed at a certain pitch, rather than a fre-
quency list. The reference system mentioned above will be
the harmonic spectrum, which we may as well consider as an
infinitely long pattern of intervals. Given a test object, we
try to find out whether there exists a subset of increasing
harmonics inside the spectrum whose pattern of intervals
matches the object's pattern within a certain predefined
tolerance. Our object is then completely defined by the
sequence of whole numbers corresponding to the harmonic
ranks, and by the pitch of the related fundamental. The fre-
quency {0 of the latter is fO = f/h where f is the frequency of
the lowest-pitched component in the object and h is the
rank of the related harmonic. (see fig. 2)

There always exists a solution since it suffices to match the
test object with harmonics of higher rank. The tolerance
parameter is of importance since it defines the level of
discretisation {1/2, 1/4, 1/8, 1/n of a tone) of the pitch
space, two pitches that stand in the same micro-interval
being considered as identical.

We point out that the loss of information due to the reduc-
tion of a list of frequencies to a pattern of partial numbers
in a discretized pitch space is fully justified by the con-
straints inherent in instrumental music, the same "micro-
intervalic resolution” being used for modelling the sound
objects as well as for writing down the music.

We shall refer this algorithm as the "comb sorting algo-
rithm".

Fig. 2 "Comb" sorting algorithm the first column on the
lelft represents the Harmonic Spectrum, the vertical azxis
being that of the intervals. Columns a to c show a multi-
phonic moved along this structure until all its components
cotncide with those of the spectrum.



5. INTERRELATING SOUND OBNECTS

Musical ideas develop within a set of interrelations. There-
fore, a dialectical relationship has to be established between
the various sound objects, each of which is considered as a
pole of structuration.

We have already seen how to obtain a sequence of partials
from a sound object using the comb algorithm. The latter
may serve to unify several objects by expressing them if
possible as partials in a harmonic spectrum with the same
fundamental, as well as creating oppositions between
objects modelled with different fundamentals.

In order to generalise the comb algorithm so as to treat a

collection of objects, we first merge these objects in a single
structure S , mixing and then re-ordering all their com-

ponents in a complex "spectrum"”. Then we proceed as follows;

the lowest-pitched component of S is successively
attached to harmonics 1, 2, 3, etc. of the reference har-
monic spectrum. At each step, we examine the partial solu-
tion, i.e. the subset of components in S that match some
harmonics in the spectrum. Every original object whose
components are completely contained in that subset are
memorized in a list as are the related sequences of whole
numbers and the fundamental delivered by the comb. The
algorithm ends when every object in the collection has been
recognized once at least.
At this point the initial collection of sound objects has been
shared among a number of subclasses, each of which is asso-
ciated with a different fundamental (see fig. 3) Objects that
belong to more than cne subclass will have a different
expression in numbers of partials for each. They naturally
function as transition elements between the harmonic
potentials associated with the classes.

e
e/

Fig. 3 Organization of a set of acoustic object into classes

defined by membership to the same spectrum Fach class is
defined by the fact that its elements are ezpressed as
sequences of partials of the same fundamental, An element
commaon fo two classes thus has at least two expressions as
seguence of numbers of portials.
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One can as well choose to represent this kind of structure
with an "intersection graph" built as follows : each node in
the graph is labelled with the elements of a particular class,
and an edge joining nodes nl and n? is labelled with the
elements in the intersection of n! and n2 (see fig. 4).

02,08,010
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O 08

05,01t

Fig. 4 Graph conmstructed on a sequence of 5 tenor saxo-
phone multiphonics : The figures labelling the transitions
ore the numbers of multiphonics. The encircled figures
designate the classes derived from the sorting algorithm.
Via multiphanics 5 and 11 one remains in class 1 or moves
to 3.

Such a graph makes up a pool of possible paths through suc-
cessive states of harmonic organisation (the nodes) struc-
tured around the fundamental of the related class and its
harmonic spectrum ; the objects in that class make a sub-
graph of harmonic poles; finally the objects on the edges
make transitions possible between the different states (fig. 5
shows a sample two-levels traversal of a graph).

Fig. 5 Route through a graph : This exemple which was used
in the compilation of "nonsun", a piece for woodwind quin-
tet by Claudy Mualherbe, shows o possible pathway flow
between two graphs interlinked by a pivot object : the point
of entry is multiphonic (1 107 in the fop left hand corner.
The graph should-be read from top to bottom. At multiphonic
Bn 30 there is a nk-up with the graph on the right which is
Jollowed right through and then the flow resumes at the
point of the tnitial derivation. The figures in circles show
the graph's nodes with the associated fundamentals.
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The composer can use this pre-organisation of the acoustic
material in various ways :

- common parts or differentiation

- sudden or slow state-to-state evolution

- game of redundancies and memory process

- dialectics organizing temporal development,
ete.

8. SCALE CONSTRUCTION

There still remains the need for tools helping the composer
to generate musical objects, such as rhythmic structures,
pitch scales and pitch distribution modes, etc. in a way that
is consistent with the pre-organization of the acoustic
materials previously shown [1]. A formalism for scale con-
struction is now proposed.

Let S be a sequence of numbers of partials taken from a
reference harmonic spectrum. .

P=(p),.paps - Py

It may be useful to consider such a sequence as a fragment
of a larger regular pattern. Now let us construct the series

Sy = (P4, 2P, 3Py, -

for each component p; of S. Then S; is included in the refer-
ence spectrum and also represents one of its transpositions
(for instance, if p;=3, S; will be a harmonic spectrum tran-
sposed to the fifth as compared to the reference spectrum).

By generalizing this principle to all the elements in the
sequence and by merging the spectra obtained, the result is
a scale S, extracted from the reference spectrum and con-
taining the initial sequence P. The expression of this scale

. TP;...)

as a series of integers is called "sieve” and each one of its

generators S; is called "simple sieve” of rank p,.
§5=5U8U - US
example :
P =(3,5, 11, 12, 15, 17, 22)

S,=(3.89 12 ... 5n, ...)
Sz = (5, 10, 15, ..., 5n, ...)

S, = (22, 44, 66, ..., 22n, ...)
S=S8,USz.U S

S =(3,5,6,9,10,11,12,15,17,18,20,21,22,24,25,27,...}

The scale made up of the combined simple sieves of rank r1,
r2, rn, ... is noted:

[ri+7m2+ - +7,]
The scale constructed in the preceding example is noted :
[B3+5+11+12+ 15+ 17 + 22]
which can be:simplified to :
[B+5+11+17]

the sieve of rank 12 being contained in that of rank 3 and
that of rank 22 in that of rank 11.
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Fig. 6 Inclusion ol an acoustic object reduced to a sequence
of partials in a scale : in the column on the extreme left the
elements of the spectrum are shown, whilst the pariials con-
stituting the acoustic object figure in bold type. The column
on the right shows the scale resulting from the union of
simple sieves in grey sirokes. This scale’s expression is
sufficient to describe the acoustic object in relation to the
reference spectrum,

The last expression is called the "largest common sieve"
(LCS') for the elements of a sequence of numbers of partials,
thus indicating that it is the least tight sieve, expressed in
terms of combinations of simple sieves, and containing all
the elements of this sequence. This is intended to imply the
idea of an optimal scale to the extent that it adds only a
limited number of elements to the initial sequence, thus
masking as little as possible the specificity of the harmonic
aggregates contaired in the acoustic material; this is
coherent with the basic model, as this scale is constructed
on the basis of interleaving of transpositions of the har-
monic spectrum.

This principle can be extended to several sequences of par-
tials by calculating the Largest Common Sieve on their
union. The result is a scale unifying a set of sound objects
expressed as sequences of partials within the same har-
monic spectrum. This LCS operator can thus be applied in
an unary manner to a sequence, or in an n-ary manner to a
collection of sequences.

As an experiment on this tool's capability to construct
interesting pitch structures we have implemented a small
expressionroriented langage as a LISP subsystem, providing
the user with (among other musical structures manipulation
tools) a set.of operators on sieves, such as : union, intersec-
tion, difference, composition of sieves, classes of non-zero
residues etc. The output of these programs is given in classi-
cal music notation so as to provide the composer with the
kind of sermmantics he is used to.
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Class |
Haraonic Spectrum on o fundaomental FI -30 cents
Ruiti.

Sequence of numbers of partigls LCS

(12 +14+26+38+50+83]

(12,14, 24, 26, 38,50, 52,83 )
[13,15,28,56,69]

Sxt 5

Sxt 11 [13+15+28+69}

LCS(Sxt5,Sxt 11 ) =[ 12413414+ 15+38+63+50+83]

Fig. 7 LCS linking the two sound objects o5 and ol1 inside
the classe 1.

let us now.go back to the graphs in paragraph 5. We have
now a means for sequencing objects that goes beyond the
mere juxtaposition. We do this by constructing transition
structures which in this case are scales produced by LCS in
one of two different ways : (notation LCS;(0;,0;) designates
the LCS in cluss C of objects §; and 0;)

FIL0ST]—> 052 —3 . 0Si .. |
ILCS -(051,052) l
2 08I —> ... ]

Fig. 8 Modes of transition between acoustic objects organ-
ized into classes : the notation f; [0S, » 0S; ~... | indicates
an order of transition for the objects 0S,, 0S,, ... , in the
class linked to the fundamental f;. Class J1 communicate
with class f; via the common object OS;.

189

- 'within a class (or a node) C, transition from
objsct O, to object 0; can be effected through
the scale LCS; (G;,0;)

- two objects G, and 0; belonging to two different
classes (nodes) [ and C; can only be interre-
lated if there exists a transition object G; (label-
ling an edge in the graph) which belongs to the
intersection of G and C;. The transition struc-
tures thus constructed are then : LCSC‘(Oi,O,)

then LCS, (G;.0;).

7. MUSICAL EXAMPLES

The following examples have been taken from the score
"nonsun” by Claudy Malherbe; this piece for five wind instru-
ments (piccolo, oboe, clarinet in B flat, bassoon) was written
in the autumn of 1984 applying the results presented in this
report.

The clarinet and the tenor saxophone are written tran-
sposed, but the examples are discussed using the pitches
actually played.

LI S R
s0 +1/4 +1/2 +3/4
b b % &
-3/4 -1/2 -1/4 -0

Alterations used in the musical examples

Example 1 (bars 141 to 152)
This sequence is organized on the basis of a saxophone mul-
tiphomic [Sxt 11).

- The multiphonic is played by the saxophone.

-  The oboe and the clarinet use ifs high-pitched
components,

- The bassoon develops a scale (LCS) constructed
on a specirum containing Sxt 11. /ts point of
departure (C sharp 4, bar 146) is a note of the
multiphonis its point of arrival (A2, bar 150)is a
doubling note of this spectrum's fundamental.

At figare V (bar 152) Szt 11 is simulated by all the instru-
ments with the ezception of the bassoon which plays the
doubling note of a new fundamental (B 2).
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Example 2 (bars 100 to 128)

This fragment is built up from the beginning of the graph
shown in fig. 5 and characterized by the pivot note G 3
which is common to all the multiphonics, It finishes here as
the second pivot note C sharp and the simulation of the bas-
soon multiphonic Bn 30 comes in.

A clarinet (Cl 108) and a sazaphone (Sxt 13) multiphonic are
interleaved and then superimposed (bar 117). The coherency
of the sequence is provided by octave doubling the funda-
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mental of a spectrum unifying the two multiphonics (AR +
1/4 tone, played as a bassoon pedal mote); in both multi-
phonics one of the components is held as a sustained note (G
8 on the clarinet and B flat 4 + 1/4 tone on the sazaphone).
The piccolo plays a shrill note of Cl 106 and of Sxt 13 alter-
nately. At figure Il (bar 119) a new fundamental (G 2), also
is played by the bassoon. The other instruments run over
the notes of the multiphonic.

S
- —_ N3
99 J—
" — - e SN P S
Pre. fHE=——x—i~ & =4 = == e ]
CL 112 nf
—5 —3 =
% C1108 1107 ; S T
LN === = = = —E— == == ]
Ly |1 f—
d £ 2 C1 108 b — e 21~-—;—"—- €
dogesde LA asec los des E,F,FUatiou G ~r . 1~ L A
S [ AR ﬁF ~4% G e 'Tﬂt 13 3¢ 3 1% Tkl Ae “dg
1. = ==E ====2C55= e =ESE =3:SE t ==
F i3 EINNE S NN e 3 #33 ¥ ¢ %
o "’ > H y ¥is —— e
99 } mare it i f i i1 fe ‘ 1t B t . Jﬁ rFa f : +
| - S e - SENSRou S S S M £ g2
Su.T — = i ——x et F = :r'.L-izT e
~ — 5 — —3 —
b 4
w ~ —~ e ~mf= T - iz ~
Bn. =F =FF EE—F EES==c=cc==is==—Ccx—u —
n Z L{ Jx_-f S— — N 174."; 1; —— IBT ll ﬁ—i' HJ_lT EL 4?; —1
lnf p f
ICMC ’85 Proceedings 190



| UN PEU LENT
e 3. s . . T
£ f ¢ :

f

5%
= -,
o —
4

-+ 3
= =+ —
% 3+ =|
% ¥ —
b -
— =" —
- = P s e 5 : |
¥ = o e — —
= : 41 = = |
T 13 <
= - = =
. s - = =
—
! [ ] Il
+ 4 Tt ]
¢ — o ——a —
x I - g
~

¥
P sait

£,

ey

=z
¥
it
54 - -
: - 9
==

J [}
$FFEIITFIISTIFTIEEF

gu
-

t:‘dasiiztistt

fondu omc la Cle 67
#

— T was/eel P -
P o =T {‘J
=t — = X 3

* '~
T 4o -
41 —r—t—a —
o o —

m

simile , fremolo |¢5ﬂ"’

“h z *.g ¥

ﬂ]ﬂﬂ/(ﬂlll

T

oo

i
il

|

ICMC 85 Proceedings



Ple.
Hb.
Cl.
: - bt £ ¢ LD
Sx.T [ﬁi == =f e = -'J"'Lff === Il:— Lt ]
o = | == — = j‘ . ff == 1 + =
125 3 — 5 ) 3
s %5 74 N - u- - - ~
Bn T 5 ':’ ——71% i ,L'L g ;}i' 17 ie fp A i - 73 - 2 [ 303 -~
- B = = =51 e
te
(Bn 30)

8. BIBLIOGRAPHY

[1] Assayag, G., Malherbe, C. (1984) Manipulation et
représentation d’objets musicauz, Proceedings of the
ICMC 1984, Paris, IRCAM.

[2] Castellengo, M. (1982) Soms multiphoniques quz instru-
ments & vent IRCAM Report no 34, Paris.

[8] Malherbe, C. (1980) Selon pour fldte en sol: un modéle
compositionnel & partir de sons complezes, Festival de
la Rochelle, june 1980, La Rochelle.

[4] Riotte, A. (1979) Formalisations de structures Musi-
cales, Université Paris VIII Vincennes, Paris.

[5] Terhardt, E., Stohl, G., Seewann, M. (1982) Algorithm. for
extraction of pitch and pitch salience from complez
tonals signals, Jour. Ac. Soc. of America, 54, 671-678.

ICMC °85 Proceedings 192



