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The Tampura Bridge as a Precursive
Wave Generator

Summary

The tampura bridge generates on a string a quasi-pe-
riodic precursive wave, responsible for a strong nar-
row formant. It arises shortly after the attack, with a
slowly decaying frequency. Due to the wave disper-
sion, at every cycle, the front part of a corner precur-
sor is not trapped between the string-bridge contact
and the “juari” thread; these similar “cuts™ are “pasted”
one after the other, to form the quasi-periodic precur-
sor. This mechanism can be imitated without any
tampura. The frequency decay is controlled by the
dispersion and by the dampings, including that of the
string on the bridge.

Der Tampura-Steg als Generator

fiir Vorliufer-Wellen

Zusammenfassung

Der Tampura-Steg erzeugt auf ciner Saite eine quasipe-
riodische Vorwelle, die fiir cinen starken, engen Forman-
ten verantwortlich ist. Sie tritt kurz nach AnreiBen der
Saite mit langsam abnehmender Frequenz auf. Aufgrund

der Dispersion der Wellen entgeht der Anfang cines Vor-
liufers in jedem Zyklus dem Einfangen zwischen dem
Jurai®-Draht und dem Kontaktpunkt Saite - Steg. Die
dhnlichen ,Ausschnitte™ werden untereinander verbun-
den und bilden den quasi-periodischen Vorliufer. Der
beschricbene Mechanismus kann auch ohne Tampura
erzeugt werden. Die Frequenzabnahme wird durch die
Dispersion und die Dampfung bewirkt, einschlieBlich der
Dampfung zwischen Saite und Steg.

Role du chevalet de tampoura comme générateur
d’une onde précursive

Sommaire

Le chevalet de tampoura génére dans la corde une onde
précursive quasi-périodique, responsable d’un formant
intense ¢t étroit. Elle apparait peu aprés l'attaque, sa
fréquence décroit lentement. A cause de la dispersion des
ondes, i chaque cycle, la partie frontale précursive d'un
point anguleux échappe au piége formée entre le fil «juari»
et le point de contact corde/chevalet; ces «morceaux»
similaires sont «collés» I'un derriére I'autre, pour consti-
tuer le précurseur quasi-périodique. On peut imiter ce
mécanisme en I'absence de tampoura. La décroissance de
fréquence est contrdlee par la dispersion et les amortisse-
ments, y compris celui de la corde sur le chevalet.

1. Introduction

The strange sound of the tampura, arising only when
the “juari” thread is correctly placed, is surprising and
fascinating. The richness of high overtones moves
continuously, and our sensation of time tends to
change. The listener does not perceive the attacks, and
it seems that the instrument is bowed rather than
plucked. The physicist would like to understand how
this works!

The four strings are always tuned on the same four
notes and played according to a unique rhythm. They
rest on a wide, curved bridge (Fig. 1a). Before playing,
the musician must adjust carefully the position of the
thread called the “juari™ thread which is placed be-
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tween each string and the bridge. As long as the posi-
tion is not correct, the sound remains poor and dull.
The correct place is such that the string lightly touches
the bridge when resting on the thread (Fig. 1b). There-
fore the string boundary is the thread when the string
is up, and the bridge when it is down. These two places
are the same distance apart (about Smm; string
length about 1 m) however small the amplitude may
be. This is specifically what is achieved by the “juari”
threads. Somehow, we have two boundaries, at P
(thread) and M (bridge contact) instead of the usual
one (Fig. 1¢).

Raman suggested earlier [1] that the cause of the
peculiar behaviour of the tampura lies in the string
movement resulting from the nature of the contact
between the string and the bridge of the instrument.
He made beautiful photographs of this contact [2],
and showed that the string actually leaves the bridge
and returns to it, most probably once during a cycle
of vibration. He stated that this would account for a
periodic change in the length of the string, with the
production of an unusual number of overtones.
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Fig. 1. Presenting the tampura: a) drawing of the tampura
instrument, [2); b) the position of the “juari” thread is P, the
curved bridge is M and the nut is Q (not to scale, free style);
¢) the mechanism of the equivalent two point bridge.

An acoustical study by means of a sonagraph has
been made by Leipp [3], who has shown that the strik-
ing character of the sound is due to the presence of a
strong and narrow formant, the frequency of which
slides down during the sound; the attacks are particu-
larly quiet. Anyone who has made a sonagram of a
tampura sound will agree with these statements. The
anharmonicity introduced by the bridge is not that
striking, and of course it does not appear on the
sonagram.

More recent publications have examined the tonal
quality and the harmonic structure of the tampura
[4, 5]. Yet it remains a problem how the nature of the
contact between the string and the bridge may gener-
ate such a string motion that a strong sliding formant
is created, and how quiet attacks can give rise to rich
sounds on a plucked string.

2. Experiments

2.1. Experimental arrangement

For musical use, the string is softly plucked with a
finger-pad. A useful way for physicists is to pluck it at
a point with a plectrum.

The transverse force exerted by the string at the nut
of the tampura was measured by means of a small

plate of steel, with a strain gauge glued to each side.
The plate lies between one of the strings and the nut.
Detection was made through a Wheatstone bridge.

As will be detailed below, we have simulated the
behaviour of the tampura on our string measuring
frame [6]. At first, a tampura bridge was solely mount-
ed on the measuring frame on its own. Then it was
successfully replaced by an elementary two point
bridge, similar to that of Fig. 1c.

In all cases, the force signal was visualized on an
oscilloscope, and digitized through an A/D convertor.
With a 48 ps sampling time, a 2 s signal can be stored
in the microcomputer. Temporal modifications of the
wave form are studied, and time frequency analysis is
performed by means of Spectral Differential Analysis,
a powerful signal analysis method [7}.

2.2. Preliminary experimental results

Following on the initial idea of Raman, we have stud-
ied the string movement using our detectors.

The comparison between the force signals obtained
on the complete tampura and those using the measur-
ing frame with a tampura bridge proved that the in-
strument does not in fact change the motion of the
string. As Raman thought, its peculiar features are
essentially due to the bridge. Furthermore, very simi-
lar results were obtained on our two point simple
bridge. This proves that the curved bridge with the
“juari” thread is essentially nothing but a two point
bridge.

2.3. Existence of a precursor, qualitative results

Just looking at the force signal while listening to it
made it clear which part of the wave form was respon-
sible for the formant. For the six successive shapes of
Fig. 2, the tampura was initially plucked with a plec-
trum. The wave part labelled “v” carries energy at a
progressively decreasing frequency. The frequency
drifts similarly to that of the formant. Subjectively, the
ear listening to the formant agrees with the eye look-
ing at “v”.

Comparing Fig. 2 with the wave shape usually ob-
tained on plectrum plucked strings with ordinary
boundaries [8], we identify the force discontinuity fol-
lowing “v” as the effect of a propagating corner on the
string, and “v” itself as a “precursor” of this corner. A
flexural wave originated by the high frequencies of the
corner propagates ahead of it, because of dispersion
(phase speed higher for higher frequencies). This tam-
pura precursor could not have been identified by
looking at the sound signal instead of the force signal.

Let us recall the features of a precursor on the usual
strings. For a string plucked at a point, two corners
propagate. Each corner gives rise to a precursor (high
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Fig. 2. Six successive shapes showing the force waveform.
The tampura was initially plucked with a sharp plectrum.
The precursor is labelled “v”, the “zero” force step “u”, and
the remaining positive force “w”.

frequencies ahead), which covers a large frequency
range (dispersion). These frequencies slowly decay,
due to damping and to dispersion (see calculation of
the wave form in [8], p. 120, and Fig. 13a, b, ¢, p. 121).
A precursor results from nonlinear effects in a stiff
string, it is a pseudoperiodic flexural wave (overtones),
and thus has a formant effect. A wide formant is orig-
inated by a precursor with a large frequency range.

Let us compare the features of the tampura precur-
sor with the usual precursor previously described
more completely. Both have a decreasing frequency
(due to damping and to dispersion). Both precursors
slowly change over one period of the string (pseudope-
riodic flexural waves), and thus have a formant effect
(they carry energy at the frequencies of several over-
tones). However there are two differences. First, for
the tampura plucked at a point, only one of the two
initial corners originates a precursor, the second one
decays and vanishes. Second, the tampura precursor
has a fairly well-defined frequency, and thus gives rise
to a surprisingly narrow formant.

If the tampura is played with a soft finger-pad at-
tack, the wave form is poor at the beginning (Fig. 3a),
but after a while the precursor arises (Fig. 3¢), and the
wave form (Fig. 3e) becomes quite similar to that of
the plucked tampura (Fig. 2d). The attack is soft, but

the sound becomes rich as soon as the precursor ap-
pears.

All these results were obtained on a tampura. They
are identically obtained if all of the tampura except its
bridge is removed and replaced by a measuring frame;
and, furthermore, if the bridge itself is turned into an
elementary two point bridge. The wave forms in Fig. 4
and in Fig. 5 exhibit a close similarity with those of the
actual tampura, despite the fact that nothing of the
original instrument is left; nothing, that is, but the
“essence” of the tampua: two different bridge
boundaries depending on whether the string is up or
down, however small the amplitude is.

A sonagram of the force signal obtained on our
measuring frame, with our two point bridge, is shown
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Fig. 3. As in Fig,. 2, for a soft finger-pad attack.
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Fig. 4. Asin Fig. 2, but for the elementary two point bridge
(PM = 21 mm), on the measuring frame (string length is
about 1 m).
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Fig. 5. As in Fig. 4, for a soft finger-pad attack.

in Fig. 6. The attack is soft, the string was plucked
near the middle by a finger. Only odd overtones are
present at the beginning (the wave form was similar to
Fig. 3a). Even overtones soon arise (as in Fig. 3b, the
wave form becomes asymmetric). After some time, the
precursor appears, with a constant frequency at the
beginning, followed by a decrease. It is noticeable that
the precursor has some overtones: the overtones 2 and
3 of the precursor create a formant effect in Fig. 6,
labelled “c” and “d”. The material of which the bridge
is built changes this number. With our two point
bridge, a smoothed plastic edge at M gave fewer over-
tones in the formant than a steel one. In the same way,
we have found less numerous overtones with a wooden
tampura bridge than with a harder one made out of
bone.

2.4, Some quantitative results
for the tampura precursor frequency
2.4.1. Experiments

We determined, as mentioned above, the instanta-
neous frequency of the precursor. We compared its
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Fig. 6. Force sonogram for a two point bridge (PM = 14 mm)
and a soft finger-pad attack. “a” only odd overtones are
present at the beginning, but even overtones soon arise. “b”™:
The fundamental frequency of the formant decays, after a flat
part {(cf. Fig. 8 a, regimes R, and R;). “c” and “d”: The second
and the third overtones of the precursor have a formant
effect.

value and time dependency in different situations, in
order to see which of the experimental parameters
affect the formant. This analytic approach was carried
out on our measuring frame, with our two point
bridge. The distance between these two points?, the
plucking point, the initial amplitude (playing “forte”
or “piano”), and the material of the bridge were varied.
Cases where the string is initially plucked with a plec-
trum (precursor immediately present) or with the fin-
ger-pad (precursor arising after a while) were also
compared.

2.4.2. Results

The distance between the two points of our bridge was
the main parameter which affected the precursor
(Fig. 7): the shorter this distance, the slower was the
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Fig. 7. Precursor frequency decay for a two point bridge,
with three different PM distances. (¢} 21 mm, (a) 14 mm, (¢)
7 mm.

decay time of the precursor frequency. With an actual
tampura bridge, this distance can be decreased with a
thinner “juari” thread placed nearer to point M. The

" time evolution also depended on the plucking posi-

tion.

The precursor frequency did not decay regularly
(Fig. 8a). After a fast initial decrease Ry, a flat part R,
was reached, followed by another decrease R,, and
finally a flat part R,.

For a given distance and the same plucking point,
the time evolution was not changed when the initial
amplitude was lowered (Fig. 8a). Thé precursor fre-
quency was not affected if the contact was smoothed
by using plastic instead of steel (Fig. 8 a) (but the wave

! Perceptually, the anharmonicity introduced by the
bridge does not obstruct the feeling of the tone; thus, we do
not comment about the induced change of vibrating length.
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3. The flexible, dispersive string model;
e R explanation of the experimental results
khz 5 (® Wi .
3y . e haye descpbed how the tampural precursor be-
> | ea'Eeadug, haves, it remains to understand why it does so. For
§ 2 Lo this we shall find some help in the work we have done
g e et oo e on harpsichord strings. Although the understanding
& sl T . of the precursor would necessitate a complete theoret-
1 — e Ry — ical treatment of a stiff string with non-linear be-
UU 02 04 06 08 1 s 12 haviour, which has not yet been developed; a con-
N venient starting point is a flexible string model (geo-
iz ® metrical stiffness neglected), in which the dispersive
LY effect (flexible dispersive string) is taken into account
z {lgiar, [91.
- ’ .:‘hg“"m‘j R 3.1. The flexible, non-dispersive string model,
_ ° and the experimental facts it explains
) D[] 0.2 04 06 08 1 s 12 Let us consider as a starting point, a flexible non-dis-
Time ——= persive string, resting on a two point bridge. Damping
due to air viscosity, metal viscosity, dislocation move-

Fig. 8. Precursor frequency decay for a two point bridge

(PM =21 mm), in four different sitvations (same plucking

point):

e plectrum plucked string, high amplitude (“forte™), two
steel edges P and M,

e plectrum plucked string, low amplitude (“piano”),

e same as the first one, but M smoothed (plastic instead of
steel),

e same as the first one, but soft finger-pad attack, Frequency
value of two different parts of the precursor,

a) The four different regimes: first decay R, first flat part R,
second decay R,, second flat part R,. With the soft attack,
the precursor arises after a while, R, section is missing, but
R,, R;, R, remain unchanged.

b) Same as Fig. 8 a, but with the time origin for the soft attack
incorrectly taken to be when the precursor appears. The
damping of the string affects the whole process, and exists
during section R, even if there is no precursor present. (o)
with plectrum forte (¢) with plectrum piano (a) with plectrum
forte on smoothed bridge; (a) with finger pad forte.

shape was modified, so that the number of overtones
of the precursor decreased).

In Fig. 8b, the time origin for the finger-pad
plucked string was incorrectly taken to be when the
precursor appears, instead of when the string was
plucked. The precursor frequency would not follow
the usual regimes. In fact, the damping of the string
affects the whole process, and exists during R,
(Fig. 8 a) even if there is no precursor present. The time
scale is physically related to the damping. When the
precursor is present, its frequency and time evolution
(Fig. 8a, R,, R;, R,) do not depend of the nature of
the attack.

ments and thermal irreversibilities, [6], are neglected.
The damping of the string against the bridge itself (stiff
bridge), will be explained immediately below. The
string is initially plucked by a plectrum (point con-
tact). The shape of the string as a function of time is
not difficult to construct geometrically (with a ruler
and a pair of compasses), assuming a constant velocity
for straight parts of the string (no applied forces), and
a constant phase speed along the string. At a corner,
a force is applied, a velocity jump occurs in the string,
which propagates at the phase velocity. When a cor-
ner reaches a fixed boundary, reflection occurs, the
phase velocity reverses, whereas the velocity of the
string beyond the corner remains unchanged. The re-
sult is given in Fig. 9 at 13 different times; characteris-
tic points are labelled in Fig. 9a. Detailed comments
are now necessary to understand the model, we apol-
ogize for boring the reader, and ask him to be patient.

— Fig. 9b, the corner “a” runs along AP, the corner
“e” runs along AQ; the kinetic energy between “a” and
“¢” increases (the interval grows between “a” and “e”),
whereas the potential energy decreases (the string’s
geometrical length shortens).

— Fig. 9¢, the corner “a” is trapped between the
points P and M; the trapped part of the string will
oscillate at a high frequency, let us assume that it will
soon decay, even on a stiff bridge, sooner on a “juari”
thread. This accounts for the damping of the string on
the bridge. A new corner “a,” is generated at the point
M.

- Fig. 9d, “a,” and “¢” are about to cross at X.

— Fig. 9e, “e” has just passed through M, it has been
partially reflected in “r,”, which runs along MB,, and
partially transmitted in “e,”.
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kinetic and potential energy. The motion stops com-
pletely after n periods where n is of the order of
n=PQ/PM (for clarity, the figures presenting the
model are drawn with a very large PM distance and
large angles, so that the motion stops rapidly). This
explains why the time scale depends mainly on the
distance between the points of the two point bridge.

The force exerted by the string on the measurement
frame at point Q can also be constructed geometrical-
ly. The result, valid for small amplitudes (small angle
approximation), is shown in Fig. 10, where the time
positions of the 13 string shapes are labelled. Each
change in the force corresponding to the passing of

BE| | &

=

Force at Q
[}
=
3
o

Fig. 9. Theoretical shape of a flexible non-dispersive string,
resting on a two point bridge. a) Characteristic points of the
geometrical construction are labelled. b) to n) string shape at
13 successive times, detailed explanations in the text.

— Fig. 91, “a,” leaves the two segment initial enve-
lope, runs along the segment B, C,. It has met “r,” at
B,, and will meet “e,” at C;.

— Fig. 9g, “a,” is trapped, “a,” created; “e,” leaves
the initial envelope, runs along C; Q,, and is to meet
“r.” at Q.

- Fig. 9h, “r,” is going to meet “a,” at Y,, and will
run along Y, M.

— Fig. 91, “a,” runs along Y, Z,; “r,” will be totally
reflected at M: we shall then label it “r,”, which will
describe MM, .

— Fig. 9j, “e,” has run along Z, M, it has met “r,”
at M. It is convenient to change “e,” to “e,” at this
point, in order to determine simple recurrence rules.

~ Fig. 9k, “a,” describes B, C,.

- Fig. 91, “a,” is trapped, “a5” is created; “e,” runs
along C, Q,, “r,” runs along QQ,, they will meet at
Q,.

— Fig. 9m, “a;” describes Y, Z,.

— Fig. 9n, “a;” describes B, C;.

The recurrence rules follow straightforwardly, from
the polygon MB,C,Q,Y,Z,M,;B,C,Q,Y,Z,M,....
Each time the string goes on M from upwards to
downwards (Fig. 9¢, 9g and 9h), it loses the same

Fig. 10. Force calculated at Q, from Fig. 8 (small angle ap-
proximation). The time position of the 13 string shapes are
labelled, the passings of the corners also. The three periods
T t 1, T—20 are shown.

point Q by one of the corners, is also labelled in the
figure. After the passing of “r” (j=1,2,...,n), the
force is just zero; this is the “image effect” of the resting
part of the string which has been introduced, at the left
of M, when the string moved upwards (Fig. 9e and j).
Let us introduce o= AP/AQ (plucking ratio) and
¢ = phase speed of the flexural waves. The passings
of the corners “e;”, “a;”, “r;” (j < n) are periodic, re-
spectively with periods T, T—t, T —260, where:
T=2PQ/c, t 2 KM/c, 6 = PM/c. After some calcu-
lation, we find: T = 2a 6/(1 + «). Thus, 7 is smaller or
greater than @ according to whether the string is
plucked nearer the bridge or nearer the nut. In the
middle © = 6. This accounts for the effect of the pluck-
ing position. These three periods act differently on the
whole process and have different physical origins. The
corner “a;” is periodically created and destroyed at
two points M and K, whereas “e;” and “r;” remain all
the time. This difference has a consequence on the
tone perception, which will be explained below (next
model). The period of time during which the force at
Q is oriented downwards (initially = PA/c), decreases
by 1 at each period; 7 is the duration corresponding to
the moving portion KM of the trapped part of the
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string when it goes downwards. The zero force dura-
tion grows by 28 at each period; @ is an additional
duration corresponding to the resting part PM of the
string, which comes in when the string goes upwards.
The time interval, when the force is up, decreases by
20 — 7 at each period.

When the attack is exactly in the middle, the force
signal is initially symmetrical (even overtones re-
jected). Asymmetry appears and increases because the
duration 7 always subtracts from the negative section
of the force wave-form, and because the duration 28
always adds a zero force interval at the end of the
positive section, The force signal becomes more and
more asymmetrical, so that even overtones appear
more and more.

This effect has been illustrated in Fig. 6, labelled
“a”. The zero force part, increasing every period, can
be seen clearly in Fig. 4 a, labelled “u”, and at the three
similar places; “u” is perfectly flat in Fig. 4b and
Fig. Se. It is also present with the actual tampura, for
instance in Fig. 2b, Fig. 2¢, Fig. 2d, and in Fig. 3b,
3¢, 3d, 3¢, labelled “u”. However, in Fig. 2¢, Fig. 3¢
and Fig. 3d, “u” 1s not exactly flat; this is because the
part of the string at rest fits the curvature of the bridge
exactly, whereas it is straight for the two point bridge.

3.2. The flexible, dispersive string model,
and the experimental facts that it explains

Let us now take into account the dispersion effect.
Nothing is changed as far as low frequencies are con-
cerned, and it has been established in [8] that the only
change is to create a precursor moving ahead of each
travelling corner.

The key of the tampura mystery is given by Fig. 9c,
Fig. 9g and Fig. 91: the trapped corner “a;” (j < n) has
developed its own precursor during the last elapsed
period. The front part of this precursor has not been
trapped. Coming after this front part, a new corner
“a;.+," is created, which will develop during the next
period a new precursor. The front part of it will not be
trapped and will just be added and follows the previ-
ous one. The large tampura precursor, responsible for
the acoustical formant, is thus built with similar parts
of precursors of the “a;” corners. We understand now
why the formant is so intense. Each part of precursor
contains high frequencies only, because it is a front
part (dispersion effect), so that its frequencies peak
about a mean value. The similar parts peak at a sim-
ilar value, so that the big tampura precursor peaks
sharply at a mean value. We understand now why the
formant is so narrow.

Its frequency decreases with time as it usually does
for precursors, under the combined effects of disper-
sion and damping [8]. When the distance between the

two points of the tampura bridge is changed, the
damping varies, and so does the frequency evolution.
Furthermore, if this distance is made larger, each non-
trapped part of precursor will be further ahead of the
corresponding corner. Consequently it will have a
higher frequency due to dispersion: the formant will
start at a higher frequency. This explains why, in
Fig. 7, the formant starts at 4 kHz for 21 mm, and at
3kHz for 14 mm. When a part of the precursor is
trapped, a corner is generated (Fig. 3d, force jump
after “v”), although the smooth curvature of the bridge
would at first sight seem to make this impossible. One
must not forget however that, when this happens, the
part of the string coming into contact with the bridge
is not straight (oscillations of the precursor).

We also understand now why the “e” corner, on the
contrary, gives no formant. We have seen in Fig. 9e
that “e” is partially reflected and partially transmitted,
thus its precursor splits into two parts. After one peri-
od, we have seen in Fig. 9i that “r,” is totally reflected;
but this is not true for its precursor, which is partially
reflected and partially transmitted, and thus splits
again into two parts. This destructive mechanism is as
efficient as the constructive one described above.

Among the three periods T, T — 1, T— 26 men-
tioned above, there is only one, T — 1, which is re-
lated to the passage of the precursor, and thus has a
much greater importance for the ear and tone percep-
tion. This explains why, in spite the inharmonicity
introduced by the bridge, the tone perception is unam-
biguous and well defined.

3.3. The damping of the string on the bridge

Our experimental study has shown that the formant
frequency decrease follows four different regimes
(Fig. 8a, R;, 1 £i £ 4). Each regime corresponds to a
characteristic wave shape. In other words, the damp-
ing of the string on the bridge depends on the oscillat-
ing shape of the string. During R,, the precursor
grows when the force is negative (Fig. 4a); according
to our model, a constant energy is lost each time the
string rests on M, and the string should stop com-
pletely when this constant energy cannot be lost any
more. In reality, the precursor allows for some compli-
cations; the string does not stop completely, but the
damping on the bridge drops suddenly at the end of
R, so that the formant frequency no longer decreases.
During R, the precursor spreads inside the zero force
interval (labelled “u”, Fig. 4b); this low damping
regime can exist as long as a positive force (labelled
“w”, Fig. 4c) remains; oscillation should stop if “w”
disappeared. When “w” becomes very short, higher
damping on the bridge begins, and thus during R, a
frequency decrease is observed again. During R, the
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amplitude is so small that the string keeps contact
with the bridge, and the damping on the bridge van-
ishes.

When the distance between P and M is short, the
damping on the bridge is small, and the other damp-
ings are no longer negligible; the four regimes become
less marked: this explains why they are less evident in
Fig. 7 for 7mm than for 21 mm. To produce music, a
regular frequency decrease seems to be suitable; on the
actual tampura, a short PM distance (5 mm) is used,
and the curved bridge seems to induce a more regular
decrease than our experimental two point bridge.

4. Comments and conclusion

We have shown that the tampura bridge is a precur-
sive wave generator: as a result of dispersion, the front
of a corner precursor is never trapped between P and
M, and these similar “cuts” are added one behind the
other. Our study was concerned with the force exerted
by the string. This force is of course related to the
sound of the tampura. The soundboard is very rigid,
so that very high frequencies (up to 16 kHz) can be
radiated efficiently. Such high frequencies occur if the
overtones of the precursor are present: if a harder
material is used for the bridge, the overtones of the
formant will be more numerous.

A paradox arises when the tampura is compared
without the “juari” thread and with it. As far as the
force exerted by the string is concerned, the wave
energy is higher without the thread than with it (no
extra damping on the bridge); but it sounds softer only
because of the strong non-linearity of the ear, being
less sensitive to the low frequencies of the force signal
than to the formant frequencies induced when the
thread acts. As far as the sound of the tampura itself
is concerned, it is much louder when the thread is
used, because of the rigidity of the soundboard which
makes the high frequencies more active.

The paradox of the attack is solved: the missing
even overtones arise because of the curved bridge; the
“juari” thread acts as a two point bridge, which gener-
ates the precursor even at low amplitudes.? The for-

2 The sitar also has a curved bridge, but no “juari” thread;
the formant raises at high amplitudes only [3]. A remarkable
mathematical analysis of the ideal vibrating string with a
curved bridge has been done by Burridge et al. [11].

mant is fascinating because its fundamental frequency
lies within the range where the ear is most sensitive,
and because it changes with time. This downward
slide is carefully adjusted by clever musicians; for in-
stance the formant frequency may go on without any
jump [10] when the note changes to the octave below.
Our feeling of time is modifed ...!

Acknowledgements

We wish to thank Ms. C. Aguirre who lent us her
tampura, and the French Ministry of Culture for fund-
ing our laboratory. We are indebted to our colleague
X. Boutillon for his fruitful suggestions during the
writing, and to Dr. R. C. Chivers who greatly im-
proved the English version.

References

[1] Raman, C. V., On some Indian string instruments. Proc.
Ind. Assoc. Cult Sc. 7 [1921-1922], 29.

[2] Chaitanya Deva, B, The music of India, a scientific
study. Munshiram Manoharlal Publishers Pvt. Ltd.,
New Delhi 1981, p. 34.

[3] Leipp, E., Tran Van Khe, Le sarod et la musique de
I'Inde du Nord. Laboratoire d’Acoustique Musicale,
Jussieu, Bulletin GAM n° 24, Dec. 1966.

[4] Sengupta, R., Banerjee, B. M., Sengupta, S., Nag, D,
Tonal qualities of the indian tanpura. Proc. Stockholm
Music Acoustics Conference SMAC 83, Stockholm
1983, vol. 2, p. 333-342.

[5] Janakiram, V. L., Reddy, K. C., Ramakrishna, B. S,,
Harmonic structure of a newly fabricated tambura us-
ing a substitute wood. Proc. 12th Intern. Congress on
Acoustics ICA 12, Toronto 1986, Vol. 3, K1-7.

[6] Cuesta, C., Valette, C., Evolution temporelle de la vibra-
tion des cordes de clavecin. Acustica 66 [1988], 37—-45.

[7] Perio, P., Chaintreuil, S., Wu, F, Gibiat, V., Jardin, P.,
Analyse spectale différentielle: mise en ceuvre, applica-
tions et extensions. C.R. Académie des Sciences Paris,
série I, 296 [1977], 139.

[8] Cuesta, C., Valette, C., Le transitoire d’attaque des
cordes de clavecin. Acustica 68 [1989], 112—122.

[9] Cuesta, C., Valette, C., Théorie de la corde pincée en
approximation linéaire. Acustica 71 [1990], 28 -40.

[10] Castellengo, M., private communication.

[11] Burridge, R., Kappraff, J, Morshedi, C., The sitar string,
a vibrating string with a one-sided inelastic constraint.
STAM J. Appl. Math. 42 [1982], 1231-1251.





